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ABSTRACT:  This paper explores the Adomian Decomposition Method (ADM), a robust technique for solving 

linear and nonlinear differential equations introduced by G. Adomian. The main goal of this study is to offer 

an introduction to ADM, which could be beneficial for scientists seeking to grasp the method before delving 

into more complex applications. ADM addresses differential equations (both linear and nonlinear) by 

representing the solution as a series, with terms determined sequentially through a recursive relation. The 

paper presents an overview of ADM applied to standard differential equations, using various examples to 

illustrate the techniques. The fundamental principles and procedures are explained, and the Adomian solution 

is compared with the exact solution obtained through traditional mathematical methods to demonstrate their 

equivalence.  
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1. INTRODUCTION 

The ADM, initially proposed by G. Adomian and widely adopted in the 1980s, is a versatile tool for 

solving a broad spectrum of linear and non-linear PDEs, with significant applications in science and 

engineering [1]. One of the main advantages of ADM is its ability to analytically approximate large classes 

of non-stochastic differential equations without relying on discretization methods, perturbation methods, 

linearization methods, or closure approximations, which often lead to extensive numerical calculations [2]. 

Notably, ADM can solve differential and integral equations expressed as series, with terms that can be 

recursively obtained using Adomian polynomials. A key benefit of the method is the fast convergence of 

the series solution, which significantly reduces computing time. 

The purpose of this paper is to provide a comprehensive pedagogical and educational overview of ADM 

and its applications. We focus specifically on a variety of common first and second-order differential 

equations (both linear and nonlinear) and offer a detailed description of the Adomian method for solving 

them. In every case, we demonstrate the equivalence of the Adomian solution by comparing it to the exact 

solutions of specific differential equations. 

Recently, there has been considerable interest in exploring ADM, as it allows for the analysis of solutions 

and characteristics of a wide range of first and second-order ordinary differential equations (ODEs). These 

solutions can address various mathematical problems and model a diverse array of physical processes. 
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2. LITERATURE REVIEW 

Numerous fields have extensively investigated and utilized the ADM. Its efficacy in the solutions of 

Fokker-Planck equation and nonlinear heat equation is demonstrated by studies [3] and [4], respectively. 

However, study [5] highlights that ADM’s usefulness is limited under certain boundary conditions, raising 

some doubts about its reliability. Study [3] provides a thorough analysis of ADM and its variations, 

emphasizing its ability to solve fractional differential equations. Despite some drawbacks, the literature 

indicates that ADM is a versatile method capable of addressing challenging problems. 

Aslano and Abu-Alshaikh [6] examined singular initial value problems in second-order ODEs of the 

Lane-Emden type. To address the singularity challenges in inhomogeneous, linear, and nonlinear Lane-

Emden-like equations, this work presents an advancement of the Adomian decomposition approach. This 

is particularly useful when the singularity occurs on the right-hand side of such equations. A comprehensive 

understanding of these initial value problems is provided through numerous examples. When exact 

solutions are available, the numerical results are compared accordingly. 

Mak, Leung, and Harko [7] detailed the application of the Adomian method in solving common ODEs 

such as Abel, Riccati, and Bernoulli equations, demonstrating the method’s effectiveness by comparing its 

solutions to exact solutions of specific differential equations, establishing their complete equivalence. They 

also explored second and fifth-order ordinary differential equations. An essential addition to the traditional 

ADM approach, the Laplace-Adomian decomposition technique, is introduced to solve a second-order 

nonlinear differential equation. They further apply this method to the second-order Kolmogorov differential 

equation, which is crucial for explaining various physical processes. Additionally, they discuss three 

significant applications of ADM in astronomy and astrophysics: solving the Lane-Emden equation, the 

Kepler equation, and the general relativistic differential equation that describes the motion of massive 

particles in static Schwarzschild geometry with spherical symmetry. 

3. ADOMIAN DECOMPOSITION METHOD 
Adomian decomposition schemes are employed to address various problems whose mathematical 

formulations result in an equation or a system of integral, differential, or integro-differential equations. 

Consider the nonlinear equation in general form as below:  

                                                             ℓ𝜓 + ℜ𝜓 + 𝑁̂𝜓 = 𝑓(𝑠)̂.             (1) 

Given that ℓ is assumed to be the highest order derivative, readily invertible, ℜ is the less-ordered linear 

differential operator. 𝑁̂𝜓 is consider to be the nonlinear terms and 𝑓(𝑠)̂ is the source term. Applying the 

inverse operator ℓ−1 on the equation (1), and applying conditions we get 

                                              𝜓(𝑠) = 𝑔(𝑠)̂ − ℓ−1(ℜ𝜓) − ℓ−1(𝑁̂𝜓),                                     (2) 

where the terms resulting from using the specified conditions and integrating the source term 𝑓(𝑠)̂ are 

represented by the function 𝑔(𝑠)̂. For nonlinear DE, the nonlinear operator 𝑁̂𝜓 = 𝐹(𝜓) is represented by 

an infinite series called Adomian polynomials. This polynomial will only be use if we have a nonlinear 

term of 𝑁̂(𝜓). We decompose the 𝜓-term of the unknown function in the form of infinite series. 

Now, let 

                                                                          𝜓(𝑠) = ∑ 𝜓𝑐

∞

𝑐=0

.                                                            (3) 

Also consider the non-linear term in (1) which can be decompose as follow 

 

                                                                          𝑁̂(𝜓) = ∑ 𝜌𝑐  ,                                                     (4)

∞

𝑐=0

 

where the 𝜌𝑐 ’𝑠 are polynomials of 𝜓0, 𝜓1, . . . , 𝜓𝑐 called Adomian’s polynomials and are obtained by the 

formulae 
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                                    𝜌𝑐 =
1

𝑐!

𝑑𝑐

𝑑𝜆𝑐
[𝑁̂ (∑ 𝜆𝛼𝜓𝛼

∞

𝛼=0

)]𝜆=0,    𝑐 = 1,2,3,4 ….                    (5) 

Putting (3) and (4) in (2) we get 

 

                                          ∑ 𝜓𝑐

∞

𝑐=0

= 𝑔(𝑠) − ℓ−1ℜ [∑ 𝜓𝑐

∞

𝑐=0

] − ℓ−1𝑁̂ [∑ 𝜌𝑐

∞

𝑐=0

],                            (6) 

∑ 𝜓𝑐+1

∞

𝑐=−1

= 𝑔(𝑠) − ∑[

∞

𝑐=0

ℓ−1ℜ[𝜓𝑐] − ℓ−1𝑁̂[𝜌𝑐]], 

                                𝜓0 + ∑ 𝜓𝑐+1

∞

𝑐=0

= 𝑔(𝑠) − ∑[

∞

𝑐=0

ℓ−1ℜ[𝜓𝑐] − ℓ−1𝑁̂[𝜌𝑐]],                             (7) 

NB: ∑ 𝜓𝑐+1
∞
𝑐=1  helps to get an iteration relation so that we can get the unknown terms for 𝜓 in (3).  

Now, from (7), we get 

                                                                   𝜓0(𝑠) = 𝑔(𝑠),                                                                    (8) 

                               𝜓𝑐+1 = ℓ−1ℜ[𝜓𝑐] − ℓ−1𝑁̂[𝜌𝑐],     𝑐 = 1,2,3,4 ….                                         (9) 

Now, (8) and (9) are iteration scheme to be follow. By taking the finite number of terms from (9) we get 

an approximate or exact solutions as follow 

 

𝜓(𝑡) ≈ ∑ 𝜓𝑐

𝑁

𝑐=0

 , 

or, 

 

𝜓(𝑠) = lim
𝑐→∞

∑ 𝜓𝑐(𝑠)

𝑁

𝑐=0

. 

4. THE ADM FOR FIRST ORDER DIFFERENTIAL EQUATION 

In this section, we deal with first order differential equations. Consider the general form of first ODE 

 

                                                                   
𝑑𝜓

𝑑𝑠
+ 𝐾(𝑠)̂𝜓 = 𝑔(𝑠)̂ ,                                                (10) 

where 𝐾(𝑠)̂ and 𝑔(𝑠)̂ are any given function of 𝑠. (10) Can only be solve together with the initial 

condition 𝜓(0) =𝜓0. 

Comparing (1) and (10) we have 

ℓ[𝜓] =
𝑑𝜓

𝑑𝑠
,      ℜ[𝜓] = 0,     𝑁̂[𝜓] = 0, and    𝑓(𝑠)̂ = 𝑔(𝑠)̂    and  

 

ℓ−1 = ∫ (.)
𝑠

0

. 

Operating ℓ−1 in (10) we get 

 

                                           ∫
𝑑𝜓

𝑑𝑠

𝑠

0

𝑑𝑠 = ∫ 𝑔(𝑠)̂
𝑠

0

𝑑𝑠 − ∫ 𝐾(𝑠)̂𝜓
𝑠

0

𝑑𝑠,                                              (11) 

𝜓(𝑠) − 𝜓(0) = ∫ 𝑔(𝑠)̂
𝑠

0

𝑑𝑠 − ∫ 𝐾(𝑠)̂𝜓
𝑡

0

𝑑𝑠, 
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                                             𝜓(𝑠) = 𝜓(0) + ∫ 𝑔(𝑠)̂
𝑠

0

𝑑𝑠 − ∫ 𝐾(𝑠)̂𝜓
𝑠

0

𝑑𝑠 ,                                     (12) 

Substituting (3) in (12) we obtain 

 

∑ 𝜓𝑐(𝑠)

∞

𝑐=0

= 𝑦(0) + ∫ 𝑄(𝑠)̂
𝑠

0

𝑑𝑠 − ∫ 𝐾(𝑠)̂ ∑ 𝜓𝑐

∞

𝑐=0

(𝑠)
𝑠

0

𝑑𝑠 

 

𝜓0(𝑠) + ∑ 𝜓𝑐+1(𝑠)

∞

𝑐=0

= 𝜓(0) + ∫ 𝑄(𝑠)̂
𝑠

0

𝑑𝑝 − ∫ 𝑃(𝑠)̂ ∑ 𝜓𝑐

∞

𝑛=0

(𝑠)
𝑠

0

𝑑𝑝 

 

To determine the components 𝜓𝛼(𝑠), we use the recursive relation 

 

                                                     𝜓0(𝑠) = 𝜓(0) + ∫ 𝑔(𝑠)̂
𝑠

0

𝑑𝑠                                                            (13) 

                                                𝜓𝛼+1(𝑠) = − ∫ 𝐾(𝑠)̂𝜓𝛼(𝑠)
𝑡

0

𝑑𝑠                                                           (14) 

Example 

                                                  
 𝑑𝜓

𝑑𝑠
+ 𝑠𝜓 = 4𝑠      𝜓(0) = 2.                                                               (15) 

The general solution using the condition 𝜓(0) = 2 is given by; 

 

                                                                    𝜓 = 4 − 2𝑒
−

2
𝑠2  .                                                                       (16) 

Now consider (15) we have 𝐾(𝑠)̂ = 𝑠, 𝑔(𝑠)̂ = 4𝑠. Thus the power series solution can be obtain using the 

iterative scheme in (13) and (14): 

 

                                                              𝜓0(𝑠) = 𝜓(0) + ∫ 𝑔(𝑠)̂𝑑𝑠.                                                       (17)
𝑠

0

 

                                                      𝜓𝛼+1(𝑠) = − ∫ 𝐾(𝑠)̂𝜓𝛼(𝑠)𝑑𝑠
𝑠

0

.                                                        (18) 

Using (15), (17) & (18), we obtain 

 

𝜓0(𝑠) = 𝜓(0) + ∫ 4𝑠𝑑𝑠
𝑠

0

= 2 + 2𝑠2, 

𝜓1(𝑠) = − ∫ 𝐾(𝑠)̂𝜓0(𝑠)𝑑𝑠
𝑠

0

= −𝑠2 −
𝑠4

2
, 

𝜓2(𝑠) = − ∫ 𝐾(𝑠)̂𝜓1(𝑠)𝑑𝑠
𝑠

0

=
𝑠4

4
+

𝑠6

12
 , 

𝜓3(𝑠) = − ∫ 𝐾(𝑠)̂𝜓2(𝑠)𝑑𝑠
𝑠

0

= −
𝑠6

24
−

𝑠8

96
 , 

𝜓4(𝑠) = − ∫ 𝐾(𝑠)̂𝜓3(𝑠)𝑑𝑠
𝑠

0

=
𝑠8

192
+

𝑠10

960
 , 

𝜓5(𝑠) = − ∫ 𝐾(𝑠)̂𝜓4(𝑠)𝑑𝑠
𝑠

0

= −
𝑠10

1920
−

𝑠12

11520
 , 

𝜓(𝑠) ≈ 𝜓0(𝑠) + 𝜓1(𝑠) + 𝜓2(𝑠) + 𝜓3(𝑠) + 𝜓4(𝑠) + 𝜓5(𝑠) , 
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                                    = 2 + 𝑠2 −
𝑠4

4
+

𝑠6

24
−

𝑠8

192
+

𝑠10

1920
−

𝑠12

11520
….                                      (19) 

Thus, 

                           𝜓(𝑠) ≈ 2 + 𝑠2 −
𝑠4

4
+

𝑠6

24
−

𝑠8

192
+

𝑠10

1920
−

𝑠12

11520
….                                     (20) 

Also, by series expansion of general solution in (16) we obtain 

               𝜓(𝑠) = 4 − 2𝑒
−

2
𝑠2 = 2 + 𝑠2 −

𝑠4

4
+

𝑠6

24
−

𝑠8

192
+

𝑠10

1920
−

𝑠12

11520
….                         (21) 

Apparently, the solution (20) obtained by ADM is same as the (21) exact solution. 

5. SOLUTION OF NON-LINEAR FIRST ORDER DIFFERENTIAL EQUATION USING ADM 
The general method for solving nonlinear differential equations was explained at the beginning of this 

paper. In this section, we will work through some examples to further illustrate the Adomian Techniques. 

Consider a differential equation of the form as given in the following example.  

                           

Example 

                                                        
𝑑𝜓

𝑑𝑠
− 𝜓2 = 0,   𝜓(0) = 1.                                                  (22) 

Here, the highest order derivative is 
𝑑𝜓

𝑑𝑠
= ℓ(𝜓),      ℓ−1 = ∫ (. )

𝑠

0
𝑑𝑠 and non-linear term 𝑁̂(𝜓) = 𝜓2. 

 

operating ℓ−1 on (22) we get, 

                                                                ∫
𝑑𝜓

𝑑𝑠
𝑑𝑠

𝑠

0

− ℓ−1(𝜓2) = 0 .                                                (23) 

𝜓(𝑠) − 𝑦(0) − ℓ−1(𝜓2) = 0. 
                                                                𝜓(𝑠) − 1 − ℓ−1(𝜓2) = 0.                                                 (24) 

                                                           𝑁̂(𝜓) = ∑ 𝜌𝑐 ,                                                                                      

∞

𝑐=0

(25) 

where, 

𝜌𝑐 =
1

𝑐!

𝑑𝑐

𝑑𝜆𝑐
𝑁̂[∑ 𝜓𝛼𝜆𝛼

𝑁

𝛼=0

]𝜆=0. 

 

Let the solution of (22) be in the form 

                                                                    𝜓 = ∑ 𝜓𝑐  .                                                                          (26)

∞

𝑐=0

 

Substituting (25) & (26) in (24) we get 

 

∑ 𝜓𝑐

∞

𝑐=0

= 1 + ℓ−1 [∑ 𝜌𝑐

∞

𝑐=0

], 

                                                     𝜓0 + ∑ 𝜓𝑐+1

∞

𝑐=0

= 1 + ∑ ℓ−1

∞

𝑐=0

(𝜌0),                                              (27) 

Clearly, from (27) we have 

𝜓0 = 1. 
                                                              𝜓𝑐+1 = ℓ−1(𝜌𝑐)      𝑐 = 0,1,2,3, ….                                        (28) 

Now, we can use (5) to obtain the 𝜌𝑐′𝑠 
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𝜌0 =
1

0!
𝑁̂[𝜓0]. 

𝜌0 = 𝑁̂[𝜓0] = 𝜓0
2. 

𝜌1 =
1

1!

𝑑

𝑑𝜆
𝑁̂[∑ 𝜓𝛼𝜆𝛼

1

𝛼=0

]𝜆=0. 

𝜌1 = 2𝜓0𝜓1. 

𝜌2 =
1

2!

𝑑2

𝑑𝜆2
𝑁[∑ 𝜓𝛼𝜆𝛼

2

𝛼=0

]𝜆=0. 

𝜌2 = 2𝜓0𝜓2 + 𝜓1
2. 

⋅ 
⋅ 
⋅ 

Now, we will use the iterative scheme in (28) to get the values of 𝜓𝑐
𝑠. 

𝜓1 = ℓ−1[𝜌0] = ∫ [
𝑠

0

1]𝑑𝑠 = 𝑠. 

𝜓2 = ℓ−1[𝜌1] = ∫ [2𝜓0𝜓1]
𝑠

0

= 𝑠2. 

𝜓3 = ℓ−1[𝜌2] = ∫ [2𝜓0𝜓2 + 𝜓1
2]

𝑠

0

= 𝑠3. 

𝜓4 = ℓ−1[𝜌3] = ∫ [2𝜓0𝜓3 + 2𝜓1𝜓2]
𝑠

0

= 𝑠4. 

⋅ 
⋅ 
⋅ 

Using the recursive relation of (27) and iterative scheme of (28) we have 

 

𝜓1 = 𝑠. 
𝜓2 = 𝑠2. 
𝜓3 = 𝑠3. 
𝜓4 = 𝑠4. 

⋅ 
⋅ 
⋅ 

Putting these results above in (26) we obtain 

𝜓 = 𝜓0 + 𝜓1 + 𝜓2 + 𝜓3 + 𝜓4 + ⋯. 
𝜓 = 1 + 𝑠 + 𝑠2 + 𝑠3 + 𝑠4 + ⋯. 

Since this is an infinite geometric series can be sum as 

                                                                               𝜓 =
1

1 − 𝑠
 .                                                    (29) 

And we know that this series converges if |𝑠| < 1. 

Now, we compare the solution of the given equation using ADM and solution using the conventional 

method. Consider (22) 
𝑑𝜓

𝑑𝑠
− 𝜓2 = 0  𝜓(0) = 1. 

𝑑𝜓

𝜓2
𝑑𝜓 = 𝑑𝑠. 
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∫
𝑑𝜓

𝜓2
𝑑𝜓 = ∫ 𝑑𝑠 + 𝛼. 

                                                                            
−1

𝜓
= 𝑠 + 𝛼.                                                              (30) 

Using the condition, 

𝜓(0) = 1. 
We get 

𝛼 = −1. 
Putting the value of 𝛼 in (30) we obtain the general solution as 

 

                                                                        𝜓 =
1

1 − 𝑠
.                                                             (31) 

Observing (29) and (31) the ADM arrived at the exact solution of the given nonlinear ODE. It’s 

important to note that, ADM is known by its virtue in obtaining the approximate solution of mathematical 

equation. However, in this case it is obvious to see that the ADM yield exact solution. As explained above 

the G. Adomian method may yield exact solution in some instance but not often. 

6. CONCLUSION 

We have briefly reviewed some of the key features of the powerful approach to solving linear and 

nonlinear DEs introduced by G. Adomian, known as the ADM. This method decomposes the solution to a 

nonlinear operator equation into a set of analytic functions. After presenting the fundamentals of the 

method, we extensively discussed ADM for standard DEs, including linear and nonlinear ordinary DEs, 

using various examples to clarify the techniques. Each example provided a thorough explanation of the 

basic formalism and specific procedure, demonstrating that the Adomian solution precisely matches the 

exact analytic solution obtained through conventional mathematical techniques. 

The primary aim of this study is to offer an introduction to ADM that could be valuable for scientists 

seeking to understand this method before progressing to more complex applications. Hopefully, this brief 

introduction will inspire scientists from various fields to explore this fascinating and productive area of 

study further, particularly for its effectiveness in handling complex mathematical models that describe 

natural phenomena. 

Future researchers are encouraged to focus on convergence analysis, as rigorous proofs of convergence 

are still lacking in some cases, especially for complex or modified ADM variants. Additionally, the 

development of methods for error estimation and control is necessary to ensure accurate and reliable 

solutions by effectively managing and quantifying errors. 
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